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Abstract

This paper provides a theorem which illustrates why a general adaptive feed-forward
layered network with linear output units can perform well as a pattern classification
device. The central result is that minimising the error at the output of the network
is equivalent to maximising a particular norm, the Network Cost Function, at the
output of the hidden units. If the total covariance matrix is full rank and the targets
are appropriately chosen, then this cost function relates the inverse of the total
covariance matrix and the weighted between class covariance matrix of the hidden
unit patterns. In a linear network it is shown how our theorem can reproduce the
result recently obtained by Gallinari et.al. as a special case. We present numerical
simulations to illustrate the theorem and to show that alternative choices for the cost
function at the hidden layer are not maximised, generally, in a nonlinear situation.

*This work was stimulated by a conjecture of John Bridle, to whom we are also grateful
for communicating the work of Gallinari et.al.
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Layered Networks and Discriminant Analysis. page I

1 Introduction.

Adaptive feed-forward layered networks as exemplified by the Multi-toper Perceptron are

known to be particularly useful as pattern classification techniques (see for instance 11,2]).

What is not understood is why they perform good classification, and what underlying

mechanism is responsible.

In certain instances, it is possible to identify the action of a layered network structure

- with the operation of a conventional classification scheme. For instance, a linear Perceptron

performing an auto-associative task is equivalent to a Principal Component analysis of the

data (31. This result was generalised by Gallinari et.61. (4] to a linear perceptron perform-

.. ing an hetero-associative function. This work was important because it made explicit the

fact that a linear network performing a one-from-N classification to minimise the total

mean-square output error, did so by implicitly maximising the ratio of the determinants of

the between clas and total covariance matrices. If a (linear) transformation of the input

data can be made which produces an adequate separation of the classes as determined by

the between clas and total covariance matrices, then a subsequent linear sectioning proce-Ii dure should produce good classification results. Thus it is clear why the linear Multi-layer

Perceptron is capable of performing well in such circumstances. However, for a more inter-

esting nonlinear transformation from the input data to the (usually, though not necessarily,

dimension-reducing) space spanned by the hidden units much less is known outside empir-

ical observation. This nonlinear transformation may be the usual logistic transformation of

the scalar products between input vectors and weight vectors as in the traditional multi-

layer perceptron. Alternatively, it may be the nonlinear transformation of the norm of the

vector difference between input data and weight vectors, as in the Radial Basis Function

network 15).

This study reports theoretical and numerical results on a subclass of general layered

nonlinear feed-forward adaptive networks which demonstrate why such networks have the

ability to perform nonlinear discriminant analysis successfully.

The object of interest in this paper is that cla of layered feed-forward network which
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page 2 A.R. Webb & David Lowe

takes input data, performs an arbitrary nonlinear transformation to a space controlled by

'hidden' units, and finally performs a linear transformation which attempts Lo minimise the

mean-square error to seat of known output targets. This network class will be made more

explicit in the next section. By a theoretical study of this structure, it will be apparent that

a good discrimination between clases in the space of the hidden units is obtained implicitly,

by requiring a minimisation of the output error. However, the cost function maximised at

the outputs of the hidden layer is not a common choice in conventional linear or nonlinear

discriminant analysis (see for instance 14,61). It will be shown that, for the linear layered

network, maximisation of the proposed cost function is equivalent to the maximisation of

more popular cost functions associated with discriminant analysis.

2 Discussion of the Network.

This section discusses the general class of adaptive feed-forward networks, and the subclass

of networks relevant to the theorem proposed in section 3.

In conventional feed-forward layered networks, data in the form of patterns represented

as n dimensional (real valued) vectors are mapped by a nonlinear transformation on to n'

dimensional target vectors in the following fashion. The input patterns are presented to

a set of n input units. Each input unit is totally connected to a set of no 'hidden' units

(hidden from direct contact with the environment). Associated with each link between the

i-th unit in the input layer and the j-th unit in the hidden layer is a scalar weight value,

pi. Usually, the fan-in to a hidden node takes the form of a hyperplane, and the input

to node j is of the form O = E=I lp,, where If is the i-th component of the p-th input

pattern vector. In the case of the radial basis function network [51, this fan-in takes the

form of a hypersphere, i.e. i = E"--Q(_ - oq)' for a Euclidean vector norm. The r6le

of the hidden unit is to accept the fan-in and to pan it through a (generally) nonlinear

transfer function

*j- (p0o+Dj) (1)

where poi is a local 'bias' associated with each hidden unit.

The hidden layer units are fully connected to a set of n' output units corresponding to

-2-

,.t.._--



Layered Networks and Discriminant Analysis. page 3

the components of the n' dimensional vector in the output 'target' space. The strength of

the link between the j-th hidden unit and the k-th output unit is Ai, and thus the value

received at the k-th output unit is Ot e Ai&#i. In general, the output from the k-th

output unit is a nonlinear function of its input,

0, tk(Aok + eh) (2)

where A0, is the bias associated with the k-th output unit.

The effect of this class of networks is to produce an interpolation surface 15,21 in the

high dimensional space RI ® R"' which is entirely determined once a suitable set of values

for the parameters {A, ji) has been specified. The ability of the network subsequently to

generalise depends on the shape of this interpolating surface; if the network is sufficiently

complex, it will be possible to find a set of parameters which produces an interpolating

surface which passes exactly through the set of training patterns. This will not be a good

generalisation strategy as the noise in the data will also have been fitted. Alternatively, if

the network geometry is not complex enough, there will not be a choice of parameter values

which will allow the interpolating surface to represent the relationships in the training data.

This paper is not concerned with generalisation, but with training, and what it means to

have a suitable set of parameters conditional upon the training data.

The parameters of the network are determined conditional upon a set of P input training

patterns, {(I)P E 3R") I and their associated targets {IT)P E IR'), p = 1,2,..., P. Conven-

tionally, the parameters are chosen so as to minimise the mean-square error between the

actual output of the network and the desired target patterns, i.e. the aim is to minimise

" ~E = E ii I) - I0)" 0I
P=1

(3)

S E TI - s o(A,Oj [)+ Ai.
P=l k=1

1Ih the 'bra-ket' notation for vectors, a column vector (si,s,...) is written as Is) (the 'ket'). The
corresponding row vector Is denoted (zI (the 'bra' vector). A scalar product between Is) and (I Is given
by (Vls) and Iu)(z Is a linear operator with matrix elements ris .

-3-
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page 4 A.R. Webb & David Lowe

where TP is the k-th component of the p-th target pattern vector. Since this is an explicit,

differentiable nonlinear function of the parameters of interest, one can use one of the many

nonlinear optimisation techniques to find an acceptable local minimum 121 which will give

a suitable set of weight values. Although many other error functions may be chosen to be

minimised at the output of the network, we will see that this particular choice has merits

for discriminant analysis.

The one slight variant on this general theme that the rest of the paper requires, is that the

transfer functions on the output units are linear; #,(z) = z V k. The important consequence

of this restriction, analytically and numerically, is that the weights connecting the hidden

units to the output units may be analysed by linear optimisastion methods. In particular,

given the set of weights connecting the input to hidden units, the hidden-to-output units

may be adjusted by a linear least-mean-squares method to produce a liob.. minimum in

the error subspace spanned by the set of weights {Ayk}. Consequently, given this latter set of

weights, the initial input-to-hidden weights may be adjusted by a nonlinear optimisation

strategy to find a better local minimum in the error subspace determined by the set of

weights {(p). This procedure may continue iteratively. For every 'slow' adjustment of the

input-to-hidden weights, the hidden-to-output weights respond rapidly always maintaining

the global error minimum in that subspace - the output weights are 'slaved' to the behavior

of the input weights (for a numerical comparison between this hybrid methodology and

"? solving the entire set of weights by nonlinear optimisation see 171). This hybrid method

is also closely related to the solution of the radial basis function network, if the radial

basis function centres (corresponding to the knots in curve fitting) are allowed to adjust

themselves by nonlinear methods.

It is interesting that least-squares error minimisation and linear output units in a general

feed-forward layered network illuminates the success of such structures in discrimination

problems as we now demonstrate.

-4-
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Layered Networks and Discriminant Analysis. page 5

3 Theoretical Analysis.

In this section, the error which is minimised at the output of the network will be analysed

to reveal the cost function that is implicitly maximised by the network at the output of

the hidden units. This will be accomplished in two stages. Firstly, it will be shown that

the effect of the biases at the output of the network is to ensure that the mean output of

the network equals the mean target pattern. This result allows the output biases to be

removed by a rescaling of the target vectors and the outputs of the hidden units. Secondly,

the error in terms of the rescaled variables is analysed to obtain the actual cost function

which is being maximised. Further subsections will consider the interpretation of the result

in certain limiting circumstances.

The error at the output of the network introduced in the previous section may be

expressed as

E =IIAH - T11'
(4)

Tr I(AH - T)(H'A" - T-)]

where A* indicates the transpose of matrix A and Tr denotes the trace operation. The

matrix A is an n' x (no + 1) array of weight values, including the biases,

[Al All ... ol

A= : • j (5)

Matrix T is an n' x P array of desired 'target' values, i.e. P vectors each of length n'.

For the moment, the matrix elements of the target array will be denoted t,,. Subsequently,

these values will be restricted to either zero, unity, or the reciprocal of the square root of

the number of elements in each class. Matrix H is the (no + 1) x P array of the P output

vectors of the no hidden units plus a unit with unity output to feed the bias weights. These

output vectors at the hidden layer are treated as input vectors to the final transformation

-5-
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page 6 A.R. Webb & David Lowe

without any a prior assumptions regarding their origins. Matrix H may be expressed as

41

H 1 12 ... # (6)

where #,P, j = 1,...,no, p = 1,...,P is the output value at the j-th hidden unit corre-

sponding to the P-th pattern.

Note that the matrix (A-) may be expressed in the form

AH = IAo)(lj + A'H' (7)

where IAo) denotes the bias vector over all n' output units, and (11 denotes a row vector with

'1' in every position. Thus, A' is the array of weights in the final layer, not including the

biases, and H' is the no x P array of elements [0]. This nomenclature has been introduced

so as to separate out the effect of the bias vector. The reason for this is that the bias vector

compensates for the mean shift at the output of the layered network, and so it may be

removed, as follows.

If we minimise E with respect to the bias vector only (i.e. differentiate E with respect

to IAo) and equate to zero) we find that

lNo) = IT - .A'lrn' 8

where

is the mean target vector with components

1P

= ti,, (10)

and

I jn H 11p'l) (

-6-
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Layered Networks and Diocriminant Analysis. page 7

is the mean output vector at the hidden units where the i-th component is

Lei (12)
P=1

Thus, if the square error is minimised, the optimum biases ensure that the mean output

of the network equals the mean target pattern.

Substituting equation (8) into equation (7) and then equation (7) into equation (4)

implies that the error to be minimised by the weights A' may be expressed equivalently as

E (T - Fi'(1I) + A' (1m"811 - H') 1(3

with the definitions

T - TT (JLI-((14)

i..  = H - l,.)(1l

Thus, we now wish to minimise E which is a function of scaled targets and inputs, with

respect to the parameters Ajk, ji.

It is known [8] that the matrix which minimises the error E with minimum (Frobenius)

norm is the Moore-Penrose pseudo-inverse, A+, of matrix it. The pseudo-inverse A+ of

the (rectangular) matrix A is that unique matrix which satisfies the relationships

AA+A = A

A + AA" = A+ (15)

(AA+)* = AA +

(A+A)' = A+A

-7-
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page 8 A.R. Webb & David Lowe

In terms of this generalised matrix inverse, the solution of the weigt matrix may be

expressed an

A$= "ZfH+  (16)

Since the error to be minimised is the trace of the matrix (T-A'H)(t-A'I), substituting

in the solution for A' gives, successively,

E= Tr {T A')(I -

= Tr{ItTr

- - tI(I+) " (17)

+

= Tr {T-T~r+~

To obtain this last relation, we have exploited the properties of the pseudo-inverse given

in (15) and the fact that the matrices Aft+ and l+Ifl are idempotent.

Note that the matrix (HiH) is the Total Covariance Metric, ST at the output of the

hidden units,
P

ST = = E (lop) - Im")) (( I - (mill) (18)
p=1

Thus, since the targets are fixed, minimising E is equivalent to maximising the cost

function

C = Tr {tfHS T} (19)

This is the Network Cost Function.

If we consider the case where the total covariance matrix is full rank (and so the number

of independent patterns is greater than the number of hidden units) then the rank of ST is

no and the pseudo-inverse is the true inverse,

S 5 = S-1 if ST is full rank. (20)

In a linear problem, this would correspond to an overdetermined situation which does

not have a unique solution generally. However, this is usually the case which occurs in

! .-
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Layered Networks and Discriminant Analysis. page 9

pattern classification tasks where a sufficient number of representative samples need to be

considered so that noise effects superimposed on the 'clean' patterns may be compensated

for.

We will assume that the total covariance matrix is full rank in what follows, however

the actual network cost function (19) is not restricted by this assumption. Under the full

rank restriction, it can easily be shown (see Appendix A) that maximising the Network

Cost Function is equivalent to maximising the cost function

C=Tr{ S8 ST} (21)

where

Sa !H T THtf" (22)

Equations (19) and (21) are the principal results of this paper:

Minimising the square error at the output of the adaptive layered network, is equiv-

alent to maximising the Network Cost Function (19) at the outputs of the hidden

units. If the total covariance matrix is full rank then the Network Cost Function is

the trace of the product of a matrix SB and the inverse of the total covariance matrix

of the patterris at the outputs of the hidden units (21).

The following two subsections provide an interpretation of matrix SB for specific choices

of the output coding for the target vectors.

3.1 Particular target coding schemes.

Consider the specific choice of a one-from-n' coding scheme. Along with the other as-

sumptions made on the form of the adaptive layered network structure, the desired target

value of a particular pattern is unity if the chosen input pattern is in that class, and is zero

otherwise. If there are n' classes, Ck,k 1,...,n' with nt patterns in class Cj, then for

S-9-
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page 10 A.R. Webb & David Lowe

this particular coding scheme, the matrix So introduced in the previous section may be

expanded as

So= fitf"

(23)

-i ,- (1m ) - 1-')) ((m, - (mMf)
k=1

where Imr') is the mean output vector over all patterns in class Cj,

I 1#) (24)

This equation is recognised as the expression for the weighted between class covariance

matrix. Thus, for a one-from-n' output coding (which is very common in the literature) the

layered network maximises a cost function which is the trace of the product of the weighted

between class covariance matrix, and the inverse of the total covariance matrix. This is an

interesting result, since it illustrates how adaptive layered networks implicitly incorporate

the proportions of samples within each class as priors.

Consider an alternative coding scheme: the target of an input pattern is sero if the

pattern is not in the class under consideration and is the reciprocal of the square root of

the number of patterns in that class otherwise.

Jp I/ V/Aik if OP) E Ck
t . 0 otherwise

In this case, the matrix So expands to

n'

g n , (Im ) - I-m")) ((m,,I - (m,) (25)

which is the conventional (not w.eighted by priors) between class covariance matrix. Thus,

in a pattern classification problem which would be solved best by producing a pattern

distinction which uniformly weights the classes, an adaptive layered network trained on a

one-from-n' coding scheme would not produce the best results. For instance, in modelling

.10-
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Layered Networks and Discriminant Analysis. page 11

continuous speech patterns the bulk of the acoustic vectors may represent silence. To ensure

that silence did not dominate the classification performance, but instead concentrated on

the more relevant information-bearing acoustic vectors, the adaptive layered network itself

should not incorporate prior knowledge on the frequency of occurrence of patterns within

each class for the between class covariance matrix. In order to force the network weights

not to bias in favour of the classes with largest membership, the prior knowledge of pattern

distribution has to be encoded in the target vectors. In such experiments, unevenly dis-

tributed training patterns between classes may be compensated for by scaling the 1-from-n'

target vectors by the square root of the number in each class.

Two particular instances where the distinction between the weighted and not-weighted

between class covariance matrices will not be made occur when the number of patterns in

each class is the same and in a two-ces problem. In this latter case, the weighted between

class covariance matrix, SB, and the conventional between class covariance matrix, §B, are

connected by a multiplicative constant.

8S = 2Tjn
P

Thus, maximising the cost function with the weighted covariance will give the same result

as maximising with the conventional covariance matrix for a two class problem.

3.2 The Linear Adaptive Layered Network.

The final special case to consider is when the hidden units are constrained to a linear

transfer function of the fan-in (Oj(z) = z V j). In this case, the adaptive layered network

as a whole performs a linear transformation between the input and output spaces. This was

the situation considered theoretically by Gallinari et.l. 14]. The result which they proved

(under certain reasonable assumptions) was that the weight matrix between the input and

hidden units which minimised the square error of the network, also maximised the cost

function

(w)= lW SW'1 (26)

which is the ratio of the determinants of the between class, and total covariance matrices in

the transformed space of the input patterns. In this equation, SL and Sj. are the between
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clm and total covariance matrices of the original input data. It was not clear what other

types of cost function would be maximissd also by the same matrix W', although the above

choice is a reasonable one to make for discrimination analysis. However, this choice is not

the natural cost function which the network is implicitly attempting to maximise, as we

have illustrated.

It is interesting to see if the result presented in equation (26) can reproduce the max-

imisation of C(W') (21) in the limit of a linear network. It will be shown that this is indeed

the cae. The first part of the illustration removes the effects of the biases by demonstrating

that the hidden unit bias vector compensates for the difference between the mean vector

over all patterns at the output of the hidden units and the transform of the mean of all the

input patterns. The second part demonstrates that the matrix equation satisfied by the

weights which maximises the cost function, C, is the almost the same as the equation for

the matrix which maximises the cost function 6. Thus, the explicit solution for the weights

which maximises 6 will also maximise C.

If the network is linear, then the output matrix of the hidden units, H', which is of size

no x P, is obtained by a linear transformation of the (n + 1) x P array of input patterns, I

by the no x (n + I) weight matrix W (note that W and I include the effect of the biases,

H' = WI

As illustrated previously, the effect of the biases may be separated by decomposing the

matrix H' into

H' = WT + )oo)(11 (27)

where W' is of dimension no x n, I' is of dimension n x P, Jpo) is an no dimensional column

vector and (II is an no dimensional unit constant row vector.

Since H'I1) = PImto), using the above equation gives the result that

Iuo) = Ima) - W'Im') (28)

where Im') is the mean input pattern.

-12-
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Layered Networks and Discriminant Analysis. page 13

Thus, in the can of linear hidden units, the hidden unit bias vector is to compensate

for the difference between the actual mean of the output patterns of the hidden units, and

the linear transformation of the mean of the input patterns.

Substituting back for Ipo) in (27) allows the bias to be removed by considering mean-

shifted input patterns and hidden unit outputs:-

H' - ImH)(11 = Wr' - W'Im') (1
-A = w 'I (29)

where

if H' - Im'ff)(Ll30

t 11r - IMI) (II(0

In terms of the rescaled input patterns and hidden unit outputs, the matrices SB and

ST may be expressed as

B = w'stitw'"

ST = Wii'W"
= w w (32)

where 8 and Sy are the 'between class' (provided the targets are appropriately chosen) and

total covariance matrices of the input patterns. Thus, in terms of these matrices associated

with the input data, the cost function that the network is attempting to maximise is

c =Tr {w'slw"- (w'w'j) -1 (33)

which is performed by an appropriate choice of the weight matrix W' (the links between

the input and hidden units).

-13-
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poe 14  A.R. Webb & David Lowe

The next part of this illustration is to show that any matrix which maximies the cost

function
IWs w' (4)

also maximises the coot function C(W') (33).

Taking the derivative of the cost function C(W') with respect to the elements of matrix

W' and equating to zero, gives the matrix equation

2 (W'S ' )['S('s - W'S' W (W'S'f W") 'Sf -0 (35)

Similarly, the derivative of the coat function i(W') with respect to W' equated to zero

gives the matrix equation:-

[WS'~W - W'S W" (W'81W") W'S] -0 (36)

The derivation of this equation has assumed that the rank of S is at leut no so that

the inverse (and hence the derivative of the determinant) exists.

By comparing equations (35), and (36), it is evident that a nontrivial solution for matrix

W' which satisfies (36) must also satisfy (35). In particular, any W' which satisfies the

generalised eigenvalue equation,
w's' = rw's' (37)

where r is a diagonal matrix of eigenvalues, satisfies (36) and maximises the cost function

Z with a value of Irl which is the product of the eigenvalues. This solution also satisfies

(35) and maximises the Network Cost Function, C with a value of Trr which is the sum of
the eigenvalues.

Thus W' may be composed out of the eigenvectors of S (S) - I corresponding to the

non zero eigenvalues (giving a specific solution We). Note that any linear, invertible trans-

formation, V, of W 0 , will also maximise thes two cost functions; hence the solution is not

unique.

-14-
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Lyered Networks and Discriminant Analysis. page 15

However, there exist solutions of (36) which do not maximise the cost function C but

which do still maximise the Network Cost Function C. For instance, the matrix W =

VWO + M where the columns of M" lie in the null space of S9 (so that S'M" = 0) still

satisfies the error minimisation equations, but it does not maximise the cost function i.

However, the Network Cost Function is not altered by the addition of such a null subspace

matrix. Therefore, there exist solutions which minimise the network error and mrximise the

network cost function, but which do not mauimise the cost function proposed by Gallinari

et.ul.. Note that if a minimsm 'erin solution is demanded, then matrix W' must lie entirely

within the image of SI and both cost functions are msximised simultaneously.

4 Numerical Illustration.

In this section, the implications of the theorem in Section 3 are illustrated. The problem is

to determine the number of connected groups of l's in an 8-bit binary string (the 'Contiguity

Problem'). Thus, there are 256 distinct patterns, each of which belongs to one of 5 classes.
Table I gives the number of members of each class. Note that this is not a 'typical' problem;

there is no true concept of noise in the data and, being a Boolean problem, it does not really

make sense to discuss its statistics in terms of covariance matrices. Nevertheless, it is a

simple problem with more than two classes to discriminate and with a disparate number of

patterns in each das. Despite the lack of an intuitive interpretation of covariance matrices

for such a problem, it should still be true that the Network Cost Function is msximised -

the issue is not what value the Network Cost Function attains (which will presumably be

larger for Gaussian distributed input patterns) but whether the value that it does reach

-? is the largest possible value consistent with the problem and the network. Thus we have

chosen this problem to be illustrtive of the general results we have derived.

The specific nonlinear transformation from the input layer to the hidden layer employed

in this test is that transformation as determined by a multi-layer perceptron with 8 input

units, 5 output units and a varying number of hidden units as the classification network.

The output units have a linear transfer function. The output coding scheme adopted is a

one-from-five coding, so that the matrix SB is given by equation (23). Since there are an

-15-
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page 16  A.R. Webb & David Lowe

Number of Number of
Clas connected groups members in clasI I~ 0 1

2 36
3 2 126

' 4 8 84

5 4 9

Table 1: Numbers of members in each class for the connected groups of digit l's

unequal number of members in each clas, this matrix is not proportional to the conventional

between clas covariance matrix, §a (25).

Four cost functions were evaluated at the output of the hidden units, namely the Network

Cost Function, C = 7(SsSr1 ); the cost function, C = 71(§ 8Srl); and the ratios of

determinants ISpI/ISr and I§BI/ISTI. The method of solution of the least squares problem

uses an iterative scheme to minimise the error (see Appendix B) and the cost functions are

evaluated at each stage of the iteration.

Although this is a rather artificial problem, it is one which can not be solved by a linear

transformation from input space to output space, or equivalently, a network with four linear

transfer functions at the hidden layer 141. Performing a least-means-squares mapping from

the 8 input units directly to the 5 output units, and classifying the patterns according to

the minimum Euclidean distance in the output space gives 132 (= 51.56%) correct solutions

(and one indeterminate solution since the null vector maps on to the null vector, which is

equi-distant from all classes). A network with four (linear) hidden units achieves the same

performance, though the addition of the biases does enable the null vector to be classified

correctly. Figure 1 plots the cost functions as a function of iteration number in the error

minimisation routine (in fact, for this example, we have chosen to use an inefficient algorithm

- steepest descents - to solve for the parameters of the network, since the BFGS routine

used in the nonlinear problems converged in too few iterations to illustrate the problem).

The igure shows that both the trace cost functions reach a maximum at the end of the

iteration whilst the ratio of determinants cost function reaches a maximum after about 20

iterations and then starts to decline. This is because the solution for the matrix of weights

-- 16
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connecting the input units to the hidden units is not a minimum norm solution since it has

omponents in the null space of the between class covariance matrix §B.

Introducing a nonlinear transfer function at each of the hidden units gives improved

classification performance. Figure 2 plots the cost functions as a function of iteration

number for a network with four hidden units. For the particular random start configuration

of the weights and biases chosen, the network achieved 189 (73.83%) correct solutions.

The network cost function increases monotonically with the number of iterations of the

algorithm. The sum-squared error at the output decreases monotonically correspondingly.

However, the cost function C = IV(§S71) settles at a value which is not its peak value

during the iteration. Both cost functions which depict the ratio of determinants of the
between class and total covariance matrices are not maximised. In fact, in the situation

where the number of hidden units is equal to one less than the number of classes (no =n - 1),

as illustrated in this example, the determinants (SBI and (S, are related by

ISBI=n ' - 8-, (38)

Thus both cost functions exhibit the same behaviour, as observed in the figures.

With a nonlinear network, we are not restricted to having fewer hidden units than the

number of classes as in linear discriminant analysis and Figure 3 plots the cost functions

as a function of iteration number for a network with 6 hidden units. With this number of

hidden units, the determinant of the between-class covariance matrix is identically equal to

sero since the dimension of the matrix SD is greater than the number of classes. Therefore,

it is not meaningful to use the ratio-of-determinants cost function as a measure of clas-

sification performance. Consequently, an additional cost function, Tr({B)/Tr{Sr), the

ratio of traces of the between class and total covariance matrices has also been plotted for

comparison. Note that for the particular random start configuration used for this figure,

the network achieved 192 (= 75%) correctly classified solutions.

This figure shows that the Network Cost Function is maximized as the error is minimised

but the trace of the product of the conventional between clas covariance matrix and the

inverse of the total covariance matrix is not maximised. For a larger number of hidden

units we find, for this particular problem, that the matrix ST becomes singular during the

-17-
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iteration and therefore the more general form of the network cost function (19) must be

used.

These three figures illustrate a natural evolution of discriminant analysis strategies. The

linear network produces an optimum linear transformation to a dimension reducing subspace

where the patterns corresponding to different classes are in some sense maximally separated,

and the patterns within each class are grouped (this is the example illustrated by Figure 1).

The next step is to allow for a nonlinear transformation on to a dimension reducing subspace

which should have the advantage of providing a better clas discrimination transformation

(the example illustrated by Figure 2). The final stage (Figure 3) is to allow for an embedding

of the input patterns by a nonlinear transformation to a higher dimensional space where an

even better clas separation may be achieved. Once a transformation has been performed

into a space where the transformed patterns are more easily distinguished, it is much easier

for a linear discrimination (the hidden-output layer of the multi-layer perceptron considered

in the paper) to perform good classification. These general comments are reflected in the

classification performance of the figures which rises from 132 to 192 patterns classified

correctly. However, note that in all instances, the criterion for maximal class separation is

determined by the Network Cost Function. This may not be the best criterion to choose for

a general discrimination problem, but it is the only one that such an adaptive feed-forward

layered network can employ.

5 Conclusion.

Adaptive feed-forward layered networks are capable of performing classification tasks better

than traditional methods. This paper has demonstrated that this ability arises out of the

implicit way in which a Network Cost Function is maximised in the space of the hidden

units.

Specifically, this paper considered a general nonlinear transformation from the input

patterns to a set of patterns in the space defined by the final layer of hidden units (there is

no restriction on the number of layers constituting the nonlinear transformation) followed

by a linear transformation to a set of output target patterns. If the network weights are

-20-
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Figure 3: Plots of the network cost function 7)r(Sa9Sr 1) divided by lli~(solid line),

the cost function 7Yl§BSj') divided by 11±112 (dotted line) and the ratio of traces
Tr{g9)/Tr{ST) multiplied by a factor of 10 (dashed line) as afunction of iteration number
in a least-squares minimisation routine, for a network with sit hidden units with nonlinear
transfer function.
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adjusted to minimise the mean-equare error between the desired target patterns and the

actual output patterns of the network, then this is equivalent to maximising the Network

Cost Function

CTr {itl-Sfr8it' (39)

where iT and A are defined in equation (14) and Sr is the total covariance matrix of the

patterns at the outputs of the final hidden layer.

If this total covariance matrix is full rank (which is usually the case) maximising the

Network Cost Function is equivalent to maximising the cost function

C = Tr{SBSTI} (40)

The matrix SB may be interpreted to be the weighted between clas covariance matrix

at the output of the final hidden layer if the target patterns are chosen as a 1-from-n'

coding. Equivalently, encoding the distribution of patterns between the classes into the

target patterns (which is equivalent to weighting the error minimisation) allows the matrix

SB to be interpreted as the conventional between class covariance matrix.

The action of a feed-forward network does not maximise more traditional cost functions

employed in discrimination analysis, as our numerical example illustrated. However in the

special case of a totally linear network with one hidden layer, the minimum norm solution

which maximises the ratio of determinants of the between class and total covariance matrices

(the result obtained by Gallinari et.a/ 14]) is equivalent to maximising the Network Cost

Function.

Thus an adaptive feed-forward layered network performs a natural generalisation of lin-

ear discriminant analysis by implicitly maximising a cost function relating the between class

and total covariance matrices. This is precisely why such networks have been demonstrated

to perform classification tasks well. It should be possible to force suca networks to max-

imise alternative network cost functions more appropriate to a specific task, by minimising

different error measures to the mean-square-error considered in this paper. Alternatively,

given a cost function which it is desired to maximise explicitly, what error function should

be minimised by first performing a linear transformation to a classification space which

-22-
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would implicitly achieve the same effect. In this sense, the results of this paper may have

a wider applicability in 'designer networks' for specific applications.
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A Proof of the cost function equation.

In section 3, it was shown how minimising the error was equivalent to maximising the cost

function in equation (19), i.e.

C -T (TH.S+ Tj (41)

= TrD

If we consider the eigenvalue equation of matrix D

DIz) = 9,I) (42)

and operate through the equation on the left by the matrix HT", one finds

('*Trf) SI,) = '11y (43)

This is an eigenvalue equation for the matrix

E. = A'Irt'Sq

with different eigenfunctions

IY) = It I z.

All the eigenvalues of D are also eigenvalues of E (but note that E may have additional

eigenvalues to D). Since the trace of a matrix is the sum of its eigenvalues, then the trace of

D is less than or equal to the trace of matrix E. In the case of a full rank total covariance

matrix, ST, then E has the same rank as D. Thus, E has the same number of eigenvalues of

D and so TrD = TrE. Consequently, maximising the Network Cost Function is equivalent

to maximising the cost function given in equation (21), as desired. a

Provided that the total covariance matrix is full rank, then the pseudo-inverse equals the

true inverse and the above conclusions may be reversed: maximising the cost function (21)

is equivalent to maximising the cost function (19). Thus either of the cost functions (19),

(21) may be taken to be the Network Cost Function. This is often the case in practice.

Unfortunately, this conclusion does not apply if the total covariance matrix SIT is not

full rank since there will exist eigenvalues of E which are not eigenvalues of D and so

TrE > TrD.

-24-
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B Numerical Solution of the Least-squares Problem.

In the numerical example used to illustrate the theorem, the network employed had a

single hidden layer with the output nonlinearity of the hidden units described by a logistic

function,
I

#(z) = + ep(-) (44)

and an output layer employing linear units.

The square error at the output of the network is regarded as a nonlinear function of

the weights and biases between the input layer and the hidden layer. This error may be

minimised using any suitable nonlinear function optimisation strategy 12], and we have

chosen to use a quasi-Newton technique, the BFGS method.

The minimisation proceeds as follows. Given an initial estimate, {ip(t = 0))), of the

weights and biases {Ij)) (chosen from a uniform random distribution in the interval (-1, 1))

between the input and hidden layers, the final layer weights and biases, {IA)), are calculated

using equations (16) and (8) and the value of the output error obtained. The gradient of

the error with respect to the parameters {p)) may then be calculated from Equation (3).

Thus, given an initial position and an initial search direction (taken to be the direction

of the downhill gradient), the algorithm performs a search along this direction to obtain an

estimate of the minimum of the error in this direction. Once this has been achieved, a new

search direction is generated (using the BFGS prescription) and a search performed to find

the minimum of the error in this new direction. This procedure continues until convergence.

., Note that each time that the error is evaluated (for each new estimate of the parameters

(IP))) the values of the parameters (IA)) must be obtained using equations (16) and (8)

prior to evaluation of the error. In this way, the values of the parameters (IA)) are tied

to the values of (fp)). This ensures that the method produces a global minimum in the

subspace spanned by the parameters {I,)}.

Note that the search strategy to find a minimum of the nonlinear function, could have

been performed by a standard (accelerated) steepest descents procedure. In our experi-

ence 121, this would have taken at least an order of magnitude longer in terms of CPU time,

.2&-
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or the number of iterations. It was decided that the BFGS procedure was one of the more

efficient techniques to use for this sise of problem.
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